000 01254nam a22001817a 4500
999 _c45712
_d45712
003 OSt
020 _a9788121904728
082 _a515 NAR-C
100 _aNarayan, Shanti
245 _aA Course of Mathematical Analysis
250 _a1st
260 _aNew Delhi
_bS Chand Pub.
_c2020
300 _a591p.
500 _aContents :1. Real Numbers L Bounded Sets, Open And Closed Sets 2. Real Sequences 3. Real Valued Functions Of A Single Real Variable, Limit And Continuity 4. Real Valued Functions Of A Single Real Variable 5. Derivability 6. Riemann Integrability 7. Sequences Or Functions Point-Wise And Uniform Convergence 8. Elementary Functions 9. Improper Integrals 10 Fourier Series 11. Euclidean Spaces 12. Open And Closed Sets 13. Compact Sets 14. Real Valued Functions Of Several Real Variables. 15. Limit L Continuity 16. Partial Derivatives 17. Invertible Functions 18. Implicit Functions 19. Integrals As Functions Of A Parameter 20. Integration In R2 Line Integrals. Double Integrals 21. Curve Lengths. Surface Areas 22. Integration In R3 Gauss’S And Stoke’S Theorems 23. Answers 24. Appendix
650 _aFourier series, Integrals, Improper, Mathematical analysis, Mathematics, Numbers, Real
901 _a31502
942 _2ddc
_cBK