000 01490nam a2200205Ia 4500
999 _c1179
_d1179
003 OSt
005 20200224124231.0
008 140801s2009 xx 000 0 und d
020 _a9788120313514
082 _a006.32 AND-I
100 _aAnderson, James A
245 _aAN INTRODUCTION TO NEURAL NETWORKS
260 _bPHI Pub.
_c2009
_aNew Delhi
300 _a650p.
500 _aIntroduction. Acknowledgments. Properties of Single Neurons. Synaptic Integration and Neuron Models. Essential Vector Operations. Lateral Inhibition and Sensory Processing. Simple Matrix Operations. The Linear Associator: Background and Foundations. The Linear Associator: Simulations. Early Network Models: The Perceptron. Gradient Descent Algorithms. Representation of Information. Applications of Simple Associators: Concepts Formation and Object Motion. Energy and Neural Networks: Hopfield Networks and Boltzmann Machines. Nearest Neighbor Models. Adaptive maps. The BSB Model: A Simple Nonlinear Autoassociative Neural Network. Associative Computation. Teaching Arithmetic to a Neural Network
650 _aProperties of Single Neurons , Synaptic Integration and Neuron Models
700 _aJames A ANDERSON
856 _uhttps://books.google.co.in/books?id=_ib4vPdB76gC&printsec=frontcover&dq=an+introduction+to+neural+networks+by+anderson&hl=en&sa=X&ved=0ahUKEwjD-ZbD__7fAhXKR30KHYiUCI4Q6AEIKDAA#v=onepage&q=an%20introduction%20to%20neural%20networks%20by%20anderson&f=false
942 _2ddc
_cBK