000 | 01295nam a2200193Ia 4500 | ||
---|---|---|---|
999 |
_c1176 _d1176 |
||
003 | OSt | ||
005 | 20190403105327.0 | ||
008 | 140801s2008 xx 000 0 und d | ||
020 | _a9788120327917 | ||
082 | _a006.31 ALP-I | ||
100 | _aALPAYDIN | ||
245 | _aINTRODUCTION TO MACHINE LEARNING | ||
260 |
_bJAICO PUB HOUSE _c2008 |
||
500 | _a1. Introduction 2 Supervised Learning 3. Bayesian Decision Theory 4. Parametric Methods 5. Multivariate Methods 6. Dimensionality Reduction 7. Clustering 8. Nonparametric Methods 9. Decision Trees 10. Linear Discrimination 11. Multilayer Perceptrons 12. Local Models 13. Kernel Machines 14. Graphical Models 15. Hidden Markov Models 16. Bayesian Estimation 17. Combining Multiple Learners 18. Reinforcement Learning 19. Design and Analysis of Machine Learning Experiments A. Probability Index | ||
650 | _aINTRODUCTION TO MACHINE LEARNING | ||
700 | _aEthem ALPAYDIN | ||
856 | _uhttps://books.google.co.in/books?id=1k0_-WroiqEC&printsec=frontcover&dq=introduction+to+machine+learning+by+alpaydin&hl=en&sa=X&ved=0ahUKEwiWv5DPkLPhAhVqmeAKHV1HBIIQ6AEINDAC#v=onepage&q=introduction%20to%20machine%20learning%20by%20alpaydin&f=false | ||
942 |
_2ddc _cBK _02 |