000 01295nam a2200193Ia 4500
999 _c1176
_d1176
003 OSt
005 20190403105327.0
008 140801s2008 xx 000 0 und d
020 _a9788120327917
082 _a006.31 ALP-I
100 _aALPAYDIN
245 _aINTRODUCTION TO MACHINE LEARNING
260 _bJAICO PUB HOUSE
_c2008
500 _a1. Introduction 2 Supervised Learning 3. Bayesian Decision Theory 4. Parametric Methods 5. Multivariate Methods 6. Dimensionality Reduction 7. Clustering 8. Nonparametric Methods 9. Decision Trees 10. Linear Discrimination 11. Multilayer Perceptrons 12. Local Models 13. Kernel Machines 14. Graphical Models 15. Hidden Markov Models 16. Bayesian Estimation 17. Combining Multiple Learners 18. Reinforcement Learning 19. Design and Analysis of Machine Learning Experiments A. Probability Index
650 _aINTRODUCTION TO MACHINE LEARNING
700 _aEthem ALPAYDIN
856 _uhttps://books.google.co.in/books?id=1k0_-WroiqEC&printsec=frontcover&dq=introduction+to+machine+learning+by+alpaydin&hl=en&sa=X&ved=0ahUKEwiWv5DPkLPhAhVqmeAKHV1HBIIQ6AEINDAC#v=onepage&q=introduction%20to%20machine%20learning%20by%20alpaydin&f=false
942 _2ddc
_cBK
_02