TY - BOOK AU - Larose, Daniel T TI - Data Mining and Predictive Analytics SN - 9788126559138 U1 - 006.312 LAR-D PY - 2015/// CY - New Delhi PB - Wiley N1 - 1. Data Preparation 2. Data Preprocessing 3. Exploratory Data Analysis 4. Dimension Reduction Methods 5. Univariate Statistical Analysis 6. Multivariate Statistics 7. Preparing to Model the Data 8. Simple Linear Regression 9. Multiple Regression and Model Building 10. K-Nearest Neighbor Algorithm 11. Decision Trees 12. Neural Networks 13. Logistic Regression 14. Naive Bayes and Bayesian Networks 15. Model Evaluation Techniques 16. Cost Benefit Analysis using Data Driven Costs 17. Cost Benefit Analysis for Trinary and k-Nary Classification Models 18. Graphics Evaluation of Classification Models 19. Hierarchical and k-Means Clustering 20. Kohonen Networks 21. Birch Clustering 22. Measuring Cluster Goodness 23. Association Rules 24.Segmentation Models 25.Ensemble Methods : Bagging and Boosting 26. Model Voting and Propensity Averaging 27. Genetic Algorithms 28. Imputation of Missing Data 29. Case Study Part-1 : Business Understanding data Preparation and Eda 30. Case study part 2 : Clustering and Principles Components Analysis 31. Case Study Part 3 : Modeling and Evaluation for Performance and Interpretability . ER -