Gene cloning and DNA analysis (Record no. 45947)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 14975nam a22001937a 4500 |
003 - CONTROL NUMBER IDENTIFIER | |
control field | OSt |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9781405181730 |
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 572.8633 BRO-G |
100 ## - MAIN ENTRY--PERSONAL NAME | |
Personal name | Brown, T.A. |
245 ## - TITLE STATEMENT | |
Title | Gene cloning and DNA analysis |
250 ## - EDITION STATEMENT | |
Edition statement | 6th |
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) | |
Place of publication, distribution, etc | U.K. |
Name of publisher, distributor, etc | Wiley Blackwell |
Date of publication, distribution, etc | 2010 |
300 ## - PHYSICAL DESCRIPTION | |
Extent | 320p. |
500 ## - GENERAL NOTE | |
General note | Part I The Basic Principles of Gene Cloning and DNA Analysis 1<br/><br/>1 Why Gene Cloning and DNA Analysis are Important 3<br/><br/>2 Vectors for Gene Cloning: Plasmids and Bacteriophages 15<br/><br/>3 Purification of DNA from Living Cells 29<br/><br/>4 Manipulation of Purified DNA 53<br/><br/>5 Introduction of DNA into Living Cells 83<br/><br/>6 Cloning Vectors for E. coli 101<br/><br/>7 Cloning Vectors for Eukaryotes 121<br/><br/>8 How to Obtain a Clone of a Specific Gene 145<br/><br/>9 The Polymerase Chain Reaction 169<br/><br/>Part II The Applications of Gene Cloning and DNA Analysis in Research 187<br/><br/>10 Sequencing Genes and Genomes 189<br/><br/>11 Studying Gene Expression and Function 217<br/><br/>12 Studying Genomes 243<br/><br/>13 Studying Transcriptomes and Proteomes 259<br/><br/>Part III The Applications of Gene Cloning and DNA Analysis in Biotechnology 275<br/><br/>14 Production of Protein from Cloned Genes 277<br/><br/>15 Gene Cloning and DNA Analysis in Medicine 301<br/><br/>16 Gene Cloning and DNA Analysis in Agriculture 327<br/><br/>17 Gene Cloning and DNA Analysis in Forensic Science and Archaeology 355<br/><br/>Glossary 377<br/><br/>Index 395<br/><br/> <br/><br/> <br/><br/> <br/><br/> <br/><br/> <br/><br/> <br/><br/>Preface to the Eighth Edition xv<br/><br/>Part I The Basic Principles of Gene Cloning and DNA Analysis 1<br/><br/>1 Why Gene Cloning and DNA Analysis are Important 3<br/><br/>1.1 The early development of genetics 4<br/><br/>1.2 The advent of gene cloning and the polymerase chain reaction 4<br/><br/>1.3 What is gene cloning? 5<br/><br/>1.4 What is PCR? 5<br/><br/>1.5 Why gene cloning and PCR are so important 8<br/><br/>1.5.1 Obtaining a pure sample of a gene by cloning 8<br/><br/>1.5.2 PCR can also be used to purify a gene 10<br/><br/>1.6 How to find your way through this book 11<br/><br/>Further reading 13<br/><br/>2 Vectors for Gene Cloning: Plasmids and Bacteriophages 15<br/><br/>2.1 Plasmids 15<br/><br/>2.1.1 Size and copy number 17<br/><br/>2.1.2 Conjugation and compatibility 18<br/><br/>2.1.3 Plasmid classification 19<br/><br/>2.1.4 Plasmids in organisms other than bacteria 19<br/><br/>2.2 Bacteriophages 19<br/><br/>2.2.1 The phage infection cycle 20<br/><br/>2.2.2 Lysogenic phages 20<br/><br/>2.2.3 Viruses as cloning vectors for other organisms 26<br/><br/>Further reading 27<br/><br/>3 Purification of DNA from Living Cells 29<br/><br/>3.1 Preparation of total cell DNA 30<br/><br/>3.1.1 Growing and harvesting a bacterial culture 30<br/><br/>3.1.2 Preparation of a cell extract 31<br/><br/>3.1.3 Purification of DNA from a cell extract 33<br/><br/>3.1.4 Concentration of DNA samples 37<br/><br/>3.1.5 Measurement of DNA concentration 38<br/><br/>3.1.6 Other methods for the preparation of total cell DNA 39<br/><br/>3.2 Preparation of plasmid DNA 40<br/><br/>3.2.1 Separation on the basis of size 41<br/><br/>3.2.2 Separation on the basis of conformation 42<br/><br/>3.2.3 Plasmid amplification 44<br/><br/>3.3 Preparation of bacteriophage DNA 46<br/><br/>3.3.1 Growth of cultures to obtain a high λ titre 47<br/><br/>3.3.2 Preparation of non‐lysogenic λ phages 47<br/><br/>3.3.3 Collection of phages from an infected culture 49<br/><br/>3.3.4 Purification of DNA from λ phage particles 49<br/><br/>3.3.5 Purification of M13 DNA causes few problems 49<br/><br/>Further reading 51<br/><br/>4 Manipulation of Purified DNA 53<br/><br/>4.1 The range of DNA manipulative enzymes 55<br/><br/>4.1.1 Nucleases 55<br/><br/>4.1.2 Ligases 57<br/><br/>4.1.3 Polymerases 57<br/><br/>4.1.4 DNA modifying enzymes 58<br/><br/>4.2 Enzymes for cutting DNA – restriction endonucleases 59<br/><br/>4.2.1 The discovery and function of restriction endonucleases 60<br/><br/>4.2.2 Type II restriction endonucleases cut DNA at specific nucleotide sequences 61<br/><br/>4.2.3 Blunt ends and sticky ends 62<br/><br/>4.2.4 The frequency of recognition sequences in a DNA molecule 63<br/><br/>4.2.5 Performing a restriction digest in the laboratory 64<br/><br/>4.2.6 Analysing the result of restriction endonuclease cleavage 66<br/><br/>4.2.7 Estimation of the sizes of DNA molecules 68<br/><br/>4.2.8 Mapping the positions of different restriction sites in a DNA molecule 69<br/><br/>4.2.9 Special gel electrophoresis methods for separating larger molecules 70<br/><br/>4.3 Ligation – joining DNA molecules together 72<br/><br/>4.3.1 The mode of action of DNA ligase 72<br/><br/>4.3.2 Sticky ends increase the efficiency of ligation 74<br/><br/>4.3.3 Putting sticky ends onto a blunt‐ended molecule 74<br/><br/>4.3.4 Blunt‐end ligation with a DNA topoisomerase 79<br/><br/>Further reading 81<br/><br/>5 Introduction of DNA into Living Cells 83<br/><br/>5.1 Transformation – the uptake of DNA by bacterial cells 85<br/><br/>5.1.1 Not all species of bacteria are equally efficient at DNA uptake 85<br/><br/>5.1.2 Preparation of competent E. coli cells 86<br/><br/>5.1.3 Selection for transformed cells 86<br/><br/>5.2 Identification of recombinants 88<br/><br/>5.2.1 Recombinant selection with pBR322 – insertional inactivation of an antibiotic resistance gene 89<br/><br/>5.2.2 Insertional inactivation does not always involve antibiotic resistance 90<br/><br/>5.3 Introduction of phage DNA into bacterial cells 92<br/><br/>5.3.1 Transfection 93<br/><br/>5.3.2 In vitro packaging of λ cloning vectors 93<br/><br/>5.3.3 Phage infection is visualized as plaques on an agar medium 93<br/><br/>5.3.4 Identification of recombinant phages 95<br/><br/>5.4 Introduction of DNA into non‐bacterial cells 97<br/><br/>5.4.1 Transformation of individual cells 97<br/><br/>5.4.2 Transformation of whole organisms 99<br/><br/>Further reading 99<br/><br/>6 Cloning Vectors for E. coli 101<br/><br/>6.1 Cloning vectors based on E. coli plasmids 102<br/><br/>6.1.1 The nomenclature of plasmid cloning vectors 102<br/><br/>6.1.2 The useful properties of pBR322 102<br/><br/>6.1.3 The pedigree of pBR322 103<br/><br/>6.1.4 More sophisticated E. coli plasmid cloning vectors 104<br/><br/>6.2 Cloning vectors based on λ bacteriophage 108<br/><br/>6.2.1 Natural selection was used to isolate modified λ that lack certain restriction sites 108<br/><br/>6.2.2 Segments of the λ genome can be deleted without impairing viability 108<br/><br/>6.2.3 Insertion and replacement vectors 110<br/><br/>6.2.4 Cloning experiments with λ insertion or replacement vectors 112<br/><br/>6.2.5 Long DNA fragments can be cloned using a cosmid 113<br/><br/>6.2.6 λ and other high‐capacity vectors enable genomic libraries to be constructed 114<br/><br/>6.3 Cloning vectors for synthesis of single‐stranded DNA 115<br/><br/>6.3.1 Vectors based on M13 bacteriophage 115<br/><br/>6.3.2 Hybrid plasmid–M13 vectors 117<br/><br/>6.4 Vectors for other bacteria 118<br/><br/>Further reading 119<br/><br/>7 Cloning Vectors for Eukaryotes 121<br/><br/>7.1 Vectors for yeast and other fungi 121<br/><br/>7.1.1 Selectable markers for the 2 μm plasmid 122<br/><br/>7.1.2 Vectors based on the 2 μm plasmid – yeast episomal plasmids 122<br/><br/>7.1.3 A YEp may insert into yeast chromosomal DNA 124<br/><br/>7.1.4 Other types of yeast cloning vector 124<br/><br/>7.1.5 Artificial chromosomes can be used to clone long pieces of DNA in yeast 126<br/><br/>7.1.6 Vectors for other yeasts and fungi 129<br/><br/>7.2 Cloning vectors for higher plants 129<br/><br/>7.2.1 Agrobacterium tumefaciens – nature’s smallest genetic engineer 130<br/><br/>7.2.2 Cloning genes in plants by direct gene transfer 135<br/><br/>7.2.3 Attempts to use plant viruses as cloning vectors 137<br/><br/>7.3 Cloning vectors for animals 138<br/><br/>7.3.1 Cloning vectors for insects 139<br/><br/>7.3.2 Cloning in mammals 141<br/><br/>Further reading 143<br/><br/>8 How to Obtain a Clone of a Specific Gene 145<br/><br/>8.1 The problem of selection 146<br/><br/>8.1.1 There are two basic strategies for obtaining the clone you want 146<br/><br/>8.2 Direct selection 147<br/><br/>8.2.1 Marker rescue extends the scope of direct selection 149<br/><br/>8.2.2 The scope and limitations of marker rescue 150<br/><br/>8.3 Identification of a clone from a gene library 150<br/><br/>8.3.1 Gene libraries 151<br/><br/>8.4 Methods for clone identification 153<br/><br/>8.4.1 Complementary nucleic acid strands hybridize to each other 154<br/><br/>8.4.2 Colony and plaque hybridization probing 154<br/><br/>8.4.3 Examples of the practical use of hybridization probing 157<br/><br/>8.4.4 Identification methods based on detection of the translation product of the cloned gene 164<br/><br/>Further reading 166<br/><br/>9 The Polymerase Chain Reaction 169<br/><br/>9.1 PCR in outline 170<br/><br/>9.2 PCR in more detail 172<br/><br/>9.2.1 Designing the oligonucleotide primers for a PCR 172<br/><br/>9.2.2 Working out the correct temperatures to use 174<br/><br/>9.3 After the PCR: studying PCR products 176<br/><br/>9.3.1 Gel electrophoresis of PCR products 177<br/><br/>9.3.2 Cloning PCR products 178<br/><br/>9.4 Real‐time PCR 180<br/><br/>9.4.1 Carrying out a real‐time PCR experiment 180<br/><br/>9.4.2 Real‐time PCR enables the amount of starting material to be quantified 182<br/><br/>9.4.3 Melting curve analysis enables point mutations to be identified 184<br/><br/>Further reading 185<br/><br/>Part II The Applications of Gene Cloning and DNA Analysis in Research 187<br/><br/>10 Sequencing Genes and Genomes 189<br/><br/>10.1 Chain‐termination DNA sequencing 190<br/><br/>10.1.1 Chain‐termination sequencing in outline 190<br/><br/>10.1.2 Not all DNA polymerases can be used for sequencing 192<br/><br/>10.1.3 Chain‐termination sequencing with Taq polymerase 193<br/><br/>10.1.4 Limitations of chain‐termination sequencing 195<br/><br/>10.2 Next‐generation sequencing 196<br/><br/>10.2.1 Preparing a library for an Illumina sequencing experiment 197<br/><br/>10.2.2 The sequencing phase of an Illumina experiment 199<br/><br/>10.2.3 Ion semiconductor sequencing 201<br/><br/>10.2.4 Third‐generation sequencing 201<br/><br/>10.2.5 Next‐generation sequencing without a DNA polymerase 202<br/><br/>10.2.6 Directing next‐generation sequencing at specific sets of genes 203<br/><br/>10.3 How to sequence a genome 205<br/><br/>10.3.1 Shotgun sequencing of prokaryotic genomes 206<br/><br/>10.3.2 Sequencing of eukaryotic genomes 209<br/><br/>Further reading 215<br/><br/>11 Studying Gene Expression and Function 217<br/><br/>11.1 Studying the RNA transcript of a gene 218<br/><br/>11.1.1 Detecting the presence of a transcript in an RNA sample 219<br/><br/>11.1.2 Transcript mapping by hybridization between gene and RNA 220<br/><br/>11.1.3 Transcript analysis by primer extension 222<br/><br/>11.1.4 Transcript analysis by PCR 223<br/><br/>11.2 Studying the regulation of gene expression 224<br/><br/>11.2.1 Identifying protein binding sites on a DNA molecule 225<br/><br/>11.2.2 Identifying control sequences by deletion analysis 230<br/><br/>11.3 Identifying and studying the translation product of a cloned gene 232<br/><br/>11.3.1 HRT and HART can identify the translation product of a cloned gene 233<br/><br/>11.3.2 Analysis of proteins by in vitro mutagenesis 234<br/><br/>Further reading 240<br/><br/>12 Studying Genomes 243<br/><br/>12.1 Locating the genes in a genome sequence 244<br/><br/>12.1.1 Locating protein‐coding genes by scanning a genome sequence 244<br/><br/>12.1.2 Gene location is aided by homology searching 247<br/><br/>12.1.3 Locating genes for noncoding RNA transcripts 249<br/><br/>12.1.4 Identifying the binding sites for regulatory proteins in a genome sequence 250<br/><br/>12.2 Determining the function of an unknown gene 251<br/><br/>12.2.1 Assigning gene functions by computer analysis 251<br/><br/>12.2.2 Assigning gene function by experimental analysis 252<br/><br/>12.3 Genome browsers 256<br/><br/>Further reading 257<br/><br/>13 Studying Transcriptomes and Proteomes 259<br/><br/>13.1 Studying transcriptomes 259<br/><br/>13.1.1 Studying transcriptomes by microarray or chip analysis 260<br/><br/>13.1.2 Studying transcriptomes by RNA sequencing 261<br/><br/>13.2 Studying proteomes 265<br/><br/>13.2.1 Protein profiling 266<br/><br/>13.2.2 Studying protein–protein interactions 270<br/><br/>Further reading 274<br/><br/>Part III The Applications of Gene Cloning and DNA Analysis in Biotechnology 275<br/><br/>14 Production of Protein from Cloned Genes 277<br/><br/>14.1 Special vectors for expression of foreign genes in E. coli 280<br/><br/>14.1.1 The promoter is the critical component of an expression vector 281<br/><br/>14.1.2 Cassettes and gene fusions 285<br/><br/>14.2 General problems with the production of recombinant protein in E. coli 287<br/><br/>14.2.1 Problems resulting from the sequence of the foreign gene 288<br/><br/>14.2.2 Problems caused by E. coli 289<br/><br/>14.3 Production of recombinant protein by eukaryotic cells 290<br/><br/>14.3.1 Recombinant protein from yeast and filamentous fungi 291<br/><br/>14.3.2 Using animal cells for recombinant protein production 293<br/><br/>14.3.3 Pharming – recombinant protein from live animals and plants 295<br/><br/>Further reading 298<br/><br/>15 Gene Cloning and DNA Analysis in Medicine 301<br/><br/>15.1 Production of recombinant pharmaceuticals 301<br/><br/>15.1.1 Recombinant insulin 302<br/><br/>15.1.2 Synthesis of human growth hormones in E. coli 304<br/><br/>15.1.3 Recombinant factor VIII 305<br/><br/>15.1.4 Synthesis of other recombinant human proteins 308<br/><br/>15.1.5 Recombinant vaccines 308<br/><br/>15.2 Identification of genes responsible for human diseases 314<br/><br/>15.2.1 How to identify a gene for a genetic disease 315<br/><br/>15.2.2 Genetic typing of disease mutations 320<br/><br/>15.3 Gene therapy 321<br/><br/>15.3.1 Gene therapy for inherited diseases 321<br/><br/>15.3.2 Gene therapy and cancer 323<br/><br/>15.3.3 The ethical issues raised by gene therapy 324<br/><br/>Further reading 325<br/><br/>16 Gene Cloning and DNA Analysis in Agriculture 327<br/><br/>16.1 The gene addition approach to plant genetic engineering 328<br/><br/>16.1.1 Plants that make their own insecticides 328<br/><br/>16.1.2 Herbicide‐resistant crops 334<br/><br/>16.1.3 Improving the nutritional quality of plants by gene addition 337<br/><br/>16.1.4 Other gene addition projects 338<br/><br/>16.2 Gene subtraction 339<br/><br/>16.2.1 Antisense RNA and the engineering of fruit ripening in tomato 340<br/><br/>16.2.2 Other examples of the use of antisense RNA in plant genetic engineering 342<br/><br/>16.3 Gene editing with a programmable nuclease 344<br/><br/>16.3.1 Gene editing of phytoene desaturase in rice 344<br/><br/>16.3.2 Editing of multiple genes in a single plant 346<br/><br/>16.3.3 Future developments in gene editing of plants 347<br/><br/>16.4 Are GM plants harmful to human health and the environment? 349<br/><br/>16.4.1 Safety concerns with selectable markers 349<br/><br/>16.4.2 The possibility of harmful effects on the environment 350<br/><br/>Further reading 351<br/><br/>17 Gene Cloning and DNA Analysis in Forensic Science and Archaeology 355<br/><br/>17.1 DNA analysis in the identification of crime suspects 356<br/><br/>17.1.1 Genetic fingerprinting by hybridization probing 356<br/><br/>17.1.2 DNA profiling by PCR of short tandem repeats 357<br/><br/>17.2 Studying kinship by DNA profiling 359<br/><br/>17.2.1 Related individuals have similar DNA profiles 359<br/><br/>17.2.2 DNA profiling and the remains of the Romanovs 360<br/><br/>17.3 Sex identification by DNA analysis 363<br/><br/>17.3.1 PCRs directed at Y chromosome‐specific sequences 363<br/><br/>17.3.2 PCR of the amelogenin gene 364<br/><br/>17.4 Archaeogenetics – using DNA to study human prehistory 365<br/><br/>17.4.1 The origins of modern humans 365<br/><br/>17.4.2 DNA can also be used to study prehistoric human migrations 370 |
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name as entry element | Science / Life Sciences / Biology, Science / Life Sciences / Cell Biology, Science / Life Sciences / Microbiology, Science / Life Sciences / Genetics & Genomics, Science / Life Sciences / Molecular Biology |
856 ## - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | <a href="https://www.google.co.in/books/edition/Gene_Cloning_and_DNA_Analysis/yEvt3JdtgTQC?hl=en&gbpv=1&dq=Gene+cloning+and+DNA+analysis+by+brown+T+A&printsec=frontcover">https://www.google.co.in/books/edition/Gene_Cloning_and_DNA_Analysis/yEvt3JdtgTQC?hl=en&gbpv=1&dq=Gene+cloning+and+DNA+analysis+by+brown+T+A&printsec=frontcover</a> |
901 ## - LOCAL DATA ELEMENT A, LDA (RLIN) | |
Acc. No. | 32277 |
942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
Source of classification or shelving scheme | Dewey Decimal Classification |
Koha item type | Reference Book |
Withdrawn status | Lost status | Source of classification or shelving scheme | Damaged status | Not for loan | Collection code | Home library | Current library | Shelving location | Date acquired | Cost, normal purchase price | Inventory number | Total Checkouts | Full call number | Barcode | Date last seen | Price effective from | Koha item type | Source of acquisition | Cost, replacement price | Public note |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dewey Decimal Classification | Not For Loan | Reference | Amity Central Library | Amity Central Library | AIB | 10/09/2021 | 9187.00 | SBA/12666 dated: 12/07/2021 | 572.8633 BRO-G | 32277 | 10/09/2021 | 10/09/2021 | Reference Book | |||||||
Dewey Decimal Classification | Not For Loan | Reference | Amity Central Library | Amity Central Library | AIB | 15/03/2024 | 8275.00 | SBA/13127 dated 4.3.2024 | 572.8633 BRO-G | 99AIB | 15/03/2024 | 10/09/2021 | Reference Book | SBA | 8275.00 | Gene cloning and DNA Analysis |