Gene cloning and DNA analysis (Record no. 45947)

MARC details
000 -LEADER
fixed length control field 14975nam a22001937a 4500
003 - CONTROL NUMBER IDENTIFIER
control field OSt
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781405181730
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 572.8633 BRO-G
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Brown, T.A.
245 ## - TITLE STATEMENT
Title Gene cloning and DNA analysis
250 ## - EDITION STATEMENT
Edition statement 6th
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc U.K.
Name of publisher, distributor, etc Wiley Blackwell
Date of publication, distribution, etc 2010
300 ## - PHYSICAL DESCRIPTION
Extent 320p.
500 ## - GENERAL NOTE
General note Part I The Basic Principles of Gene Cloning and DNA Analysis 1<br/><br/>1 Why Gene Cloning and DNA Analysis are Important 3<br/><br/>2 Vectors for Gene Cloning: Plasmids and Bacteriophages 15<br/><br/>3 Purification of DNA from Living Cells 29<br/><br/>4 Manipulation of Purified DNA 53<br/><br/>5 Introduction of DNA into Living Cells 83<br/><br/>6 Cloning Vectors for E. coli 101<br/><br/>7 Cloning Vectors for Eukaryotes 121<br/><br/>8 How to Obtain a Clone of a Specific Gene 145<br/><br/>9 The Polymerase Chain Reaction 169<br/><br/>Part II The Applications of Gene Cloning and DNA Analysis in Research 187<br/><br/>10 Sequencing Genes and Genomes 189<br/><br/>11 Studying Gene Expression and Function 217<br/><br/>12 Studying Genomes 243<br/><br/>13 Studying Transcriptomes and Proteomes 259<br/><br/>Part III The Applications of Gene Cloning and DNA Analysis in Biotechnology 275<br/><br/>14 Production of Protein from Cloned Genes 277<br/><br/>15 Gene Cloning and DNA Analysis in Medicine 301<br/><br/>16 Gene Cloning and DNA Analysis in Agriculture 327<br/><br/>17 Gene Cloning and DNA Analysis in Forensic Science and Archaeology 355<br/><br/>Glossary 377<br/><br/>Index 395<br/><br/> <br/><br/> <br/><br/> <br/><br/> <br/><br/> <br/><br/> <br/><br/>Preface to the Eighth Edition xv<br/><br/>Part I The Basic Principles of Gene Cloning and DNA Analysis 1<br/><br/>1 Why Gene Cloning and DNA Analysis are Important 3<br/><br/>1.1 The early development of genetics 4<br/><br/>1.2 The advent of gene cloning and the polymerase chain reaction 4<br/><br/>1.3 What is gene cloning? 5<br/><br/>1.4 What is PCR? 5<br/><br/>1.5 Why gene cloning and PCR are so important 8<br/><br/>1.5.1 Obtaining a pure sample of a gene by cloning 8<br/><br/>1.5.2 PCR can also be used to purify a gene 10<br/><br/>1.6 How to find your way through this book 11<br/><br/>Further reading 13<br/><br/>2 Vectors for Gene Cloning: Plasmids and Bacteriophages 15<br/><br/>2.1 Plasmids 15<br/><br/>2.1.1 Size and copy number 17<br/><br/>2.1.2 Conjugation and compatibility 18<br/><br/>2.1.3 Plasmid classification 19<br/><br/>2.1.4 Plasmids in organisms other than bacteria 19<br/><br/>2.2 Bacteriophages 19<br/><br/>2.2.1 The phage infection cycle 20<br/><br/>2.2.2 Lysogenic phages 20<br/><br/>2.2.3 Viruses as cloning vectors for other organisms 26<br/><br/>Further reading 27<br/><br/>3 Purification of DNA from Living Cells 29<br/><br/>3.1 Preparation of total cell DNA 30<br/><br/>3.1.1 Growing and harvesting a bacterial culture 30<br/><br/>3.1.2 Preparation of a cell extract 31<br/><br/>3.1.3 Purification of DNA from a cell extract 33<br/><br/>3.1.4 Concentration of DNA samples 37<br/><br/>3.1.5 Measurement of DNA concentration 38<br/><br/>3.1.6 Other methods for the preparation of total cell DNA 39<br/><br/>3.2 Preparation of plasmid DNA 40<br/><br/>3.2.1 Separation on the basis of size 41<br/><br/>3.2.2 Separation on the basis of conformation 42<br/><br/>3.2.3 Plasmid amplification 44<br/><br/>3.3 Preparation of bacteriophage DNA 46<br/><br/>3.3.1 Growth of cultures to obtain a high λ titre 47<br/><br/>3.3.2 Preparation of non‐lysogenic λ phages 47<br/><br/>3.3.3 Collection of phages from an infected culture 49<br/><br/>3.3.4 Purification of DNA from λ phage particles 49<br/><br/>3.3.5 Purification of M13 DNA causes few problems 49<br/><br/>Further reading 51<br/><br/>4 Manipulation of Purified DNA 53<br/><br/>4.1 The range of DNA manipulative enzymes 55<br/><br/>4.1.1 Nucleases 55<br/><br/>4.1.2 Ligases 57<br/><br/>4.1.3 Polymerases 57<br/><br/>4.1.4 DNA modifying enzymes 58<br/><br/>4.2 Enzymes for cutting DNA – restriction endonucleases 59<br/><br/>4.2.1 The discovery and function of restriction endonucleases 60<br/><br/>4.2.2 Type II restriction endonucleases cut DNA at specific nucleotide sequences 61<br/><br/>4.2.3 Blunt ends and sticky ends 62<br/><br/>4.2.4 The frequency of recognition sequences in a DNA molecule 63<br/><br/>4.2.5 Performing a restriction digest in the laboratory 64<br/><br/>4.2.6 Analysing the result of restriction endonuclease cleavage 66<br/><br/>4.2.7 Estimation of the sizes of DNA molecules 68<br/><br/>4.2.8 Mapping the positions of different restriction sites in a DNA molecule 69<br/><br/>4.2.9 Special gel electrophoresis methods for separating larger molecules 70<br/><br/>4.3 Ligation – joining DNA molecules together 72<br/><br/>4.3.1 The mode of action of DNA ligase 72<br/><br/>4.3.2 Sticky ends increase the efficiency of ligation 74<br/><br/>4.3.3 Putting sticky ends onto a blunt‐ended molecule 74<br/><br/>4.3.4 Blunt‐end ligation with a DNA topoisomerase 79<br/><br/>Further reading 81<br/><br/>5 Introduction of DNA into Living Cells 83<br/><br/>5.1 Transformation – the uptake of DNA by bacterial cells 85<br/><br/>5.1.1 Not all species of bacteria are equally efficient at DNA uptake 85<br/><br/>5.1.2 Preparation of competent E. coli cells 86<br/><br/>5.1.3 Selection for transformed cells 86<br/><br/>5.2 Identification of recombinants 88<br/><br/>5.2.1 Recombinant selection with pBR322 – insertional inactivation of an antibiotic resistance gene 89<br/><br/>5.2.2 Insertional inactivation does not always involve antibiotic resistance 90<br/><br/>5.3 Introduction of phage DNA into bacterial cells 92<br/><br/>5.3.1 Transfection 93<br/><br/>5.3.2 In vitro packaging of λ cloning vectors 93<br/><br/>5.3.3 Phage infection is visualized as plaques on an agar medium 93<br/><br/>5.3.4 Identification of recombinant phages 95<br/><br/>5.4 Introduction of DNA into non‐bacterial cells 97<br/><br/>5.4.1 Transformation of individual cells 97<br/><br/>5.4.2 Transformation of whole organisms 99<br/><br/>Further reading 99<br/><br/>6 Cloning Vectors for E. coli 101<br/><br/>6.1 Cloning vectors based on E. coli plasmids 102<br/><br/>6.1.1 The nomenclature of plasmid cloning vectors 102<br/><br/>6.1.2 The useful properties of pBR322 102<br/><br/>6.1.3 The pedigree of pBR322 103<br/><br/>6.1.4 More sophisticated E. coli plasmid cloning vectors 104<br/><br/>6.2 Cloning vectors based on λ bacteriophage 108<br/><br/>6.2.1 Natural selection was used to isolate modified λ that lack certain restriction sites 108<br/><br/>6.2.2 Segments of the λ genome can be deleted without impairing viability 108<br/><br/>6.2.3 Insertion and replacement vectors 110<br/><br/>6.2.4 Cloning experiments with λ insertion or replacement vectors 112<br/><br/>6.2.5 Long DNA fragments can be cloned using a cosmid 113<br/><br/>6.2.6 λ and other high‐capacity vectors enable genomic libraries to be constructed 114<br/><br/>6.3 Cloning vectors for synthesis of single‐stranded DNA 115<br/><br/>6.3.1 Vectors based on M13 bacteriophage 115<br/><br/>6.3.2 Hybrid plasmid–M13 vectors 117<br/><br/>6.4 Vectors for other bacteria 118<br/><br/>Further reading 119<br/><br/>7 Cloning Vectors for Eukaryotes 121<br/><br/>7.1 Vectors for yeast and other fungi 121<br/><br/>7.1.1 Selectable markers for the 2 μm plasmid 122<br/><br/>7.1.2 Vectors based on the 2 μm plasmid – yeast episomal plasmids 122<br/><br/>7.1.3 A YEp may insert into yeast chromosomal DNA 124<br/><br/>7.1.4 Other types of yeast cloning vector 124<br/><br/>7.1.5 Artificial chromosomes can be used to clone long pieces of DNA in yeast 126<br/><br/>7.1.6 Vectors for other yeasts and fungi 129<br/><br/>7.2 Cloning vectors for higher plants 129<br/><br/>7.2.1 Agrobacterium tumefaciens – nature’s smallest genetic engineer 130<br/><br/>7.2.2 Cloning genes in plants by direct gene transfer 135<br/><br/>7.2.3 Attempts to use plant viruses as cloning vectors 137<br/><br/>7.3 Cloning vectors for animals 138<br/><br/>7.3.1 Cloning vectors for insects 139<br/><br/>7.3.2 Cloning in mammals 141<br/><br/>Further reading 143<br/><br/>8 How to Obtain a Clone of a Specific Gene 145<br/><br/>8.1 The problem of selection 146<br/><br/>8.1.1 There are two basic strategies for obtaining the clone you want 146<br/><br/>8.2 Direct selection 147<br/><br/>8.2.1 Marker rescue extends the scope of direct selection 149<br/><br/>8.2.2 The scope and limitations of marker rescue 150<br/><br/>8.3 Identification of a clone from a gene library 150<br/><br/>8.3.1 Gene libraries 151<br/><br/>8.4 Methods for clone identification 153<br/><br/>8.4.1 Complementary nucleic acid strands hybridize to each other 154<br/><br/>8.4.2 Colony and plaque hybridization probing 154<br/><br/>8.4.3 Examples of the practical use of hybridization probing 157<br/><br/>8.4.4 Identification methods based on detection of the translation product of the cloned gene 164<br/><br/>Further reading 166<br/><br/>9 The Polymerase Chain Reaction 169<br/><br/>9.1 PCR in outline 170<br/><br/>9.2 PCR in more detail 172<br/><br/>9.2.1 Designing the oligonucleotide primers for a PCR 172<br/><br/>9.2.2 Working out the correct temperatures to use 174<br/><br/>9.3 After the PCR: studying PCR products 176<br/><br/>9.3.1 Gel electrophoresis of PCR products 177<br/><br/>9.3.2 Cloning PCR products 178<br/><br/>9.4 Real‐time PCR 180<br/><br/>9.4.1 Carrying out a real‐time PCR experiment 180<br/><br/>9.4.2 Real‐time PCR enables the amount of starting material to be quantified 182<br/><br/>9.4.3 Melting curve analysis enables point mutations to be identified 184<br/><br/>Further reading 185<br/><br/>Part II The Applications of Gene Cloning and DNA Analysis in Research 187<br/><br/>10 Sequencing Genes and Genomes 189<br/><br/>10.1 Chain‐termination DNA sequencing 190<br/><br/>10.1.1 Chain‐termination sequencing in outline 190<br/><br/>10.1.2 Not all DNA polymerases can be used for sequencing 192<br/><br/>10.1.3 Chain‐termination sequencing with Taq polymerase 193<br/><br/>10.1.4 Limitations of chain‐termination sequencing 195<br/><br/>10.2 Next‐generation sequencing 196<br/><br/>10.2.1 Preparing a library for an Illumina sequencing experiment 197<br/><br/>10.2.2 The sequencing phase of an Illumina experiment 199<br/><br/>10.2.3 Ion semiconductor sequencing 201<br/><br/>10.2.4 Third‐generation sequencing 201<br/><br/>10.2.5 Next‐generation sequencing without a DNA polymerase 202<br/><br/>10.2.6 Directing next‐generation sequencing at specific sets of genes 203<br/><br/>10.3 How to sequence a genome 205<br/><br/>10.3.1 Shotgun sequencing of prokaryotic genomes 206<br/><br/>10.3.2 Sequencing of eukaryotic genomes 209<br/><br/>Further reading 215<br/><br/>11 Studying Gene Expression and Function 217<br/><br/>11.1 Studying the RNA transcript of a gene 218<br/><br/>11.1.1 Detecting the presence of a transcript in an RNA sample 219<br/><br/>11.1.2 Transcript mapping by hybridization between gene and RNA 220<br/><br/>11.1.3 Transcript analysis by primer extension 222<br/><br/>11.1.4 Transcript analysis by PCR 223<br/><br/>11.2 Studying the regulation of gene expression 224<br/><br/>11.2.1 Identifying protein binding sites on a DNA molecule 225<br/><br/>11.2.2 Identifying control sequences by deletion analysis 230<br/><br/>11.3 Identifying and studying the translation product of a cloned gene 232<br/><br/>11.3.1 HRT and HART can identify the translation product of a cloned gene 233<br/><br/>11.3.2 Analysis of proteins by in vitro mutagenesis 234<br/><br/>Further reading 240<br/><br/>12 Studying Genomes 243<br/><br/>12.1 Locating the genes in a genome sequence 244<br/><br/>12.1.1 Locating protein‐coding genes by scanning a genome sequence 244<br/><br/>12.1.2 Gene location is aided by homology searching 247<br/><br/>12.1.3 Locating genes for noncoding RNA transcripts 249<br/><br/>12.1.4 Identifying the binding sites for regulatory proteins in a genome sequence 250<br/><br/>12.2 Determining the function of an unknown gene 251<br/><br/>12.2.1 Assigning gene functions by computer analysis 251<br/><br/>12.2.2 Assigning gene function by experimental analysis 252<br/><br/>12.3 Genome browsers 256<br/><br/>Further reading 257<br/><br/>13 Studying Transcriptomes and Proteomes 259<br/><br/>13.1 Studying transcriptomes 259<br/><br/>13.1.1 Studying transcriptomes by microarray or chip analysis 260<br/><br/>13.1.2 Studying transcriptomes by RNA sequencing 261<br/><br/>13.2 Studying proteomes 265<br/><br/>13.2.1 Protein profiling 266<br/><br/>13.2.2 Studying protein–protein interactions 270<br/><br/>Further reading 274<br/><br/>Part III The Applications of Gene Cloning and DNA Analysis in Biotechnology 275<br/><br/>14 Production of Protein from Cloned Genes 277<br/><br/>14.1 Special vectors for expression of foreign genes in E. coli 280<br/><br/>14.1.1 The promoter is the critical component of an expression vector 281<br/><br/>14.1.2 Cassettes and gene fusions 285<br/><br/>14.2 General problems with the production of recombinant protein in E. coli 287<br/><br/>14.2.1 Problems resulting from the sequence of the foreign gene 288<br/><br/>14.2.2 Problems caused by E. coli 289<br/><br/>14.3 Production of recombinant protein by eukaryotic cells 290<br/><br/>14.3.1 Recombinant protein from yeast and filamentous fungi 291<br/><br/>14.3.2 Using animal cells for recombinant protein production 293<br/><br/>14.3.3 Pharming – recombinant protein from live animals and plants 295<br/><br/>Further reading 298<br/><br/>15 Gene Cloning and DNA Analysis in Medicine 301<br/><br/>15.1 Production of recombinant pharmaceuticals 301<br/><br/>15.1.1 Recombinant insulin 302<br/><br/>15.1.2 Synthesis of human growth hormones in E. coli 304<br/><br/>15.1.3 Recombinant factor VIII 305<br/><br/>15.1.4 Synthesis of other recombinant human proteins 308<br/><br/>15.1.5 Recombinant vaccines 308<br/><br/>15.2 Identification of genes responsible for human diseases 314<br/><br/>15.2.1 How to identify a gene for a genetic disease 315<br/><br/>15.2.2 Genetic typing of disease mutations 320<br/><br/>15.3 Gene therapy 321<br/><br/>15.3.1 Gene therapy for inherited diseases 321<br/><br/>15.3.2 Gene therapy and cancer 323<br/><br/>15.3.3 The ethical issues raised by gene therapy 324<br/><br/>Further reading 325<br/><br/>16 Gene Cloning and DNA Analysis in Agriculture 327<br/><br/>16.1 The gene addition approach to plant genetic engineering 328<br/><br/>16.1.1 Plants that make their own insecticides 328<br/><br/>16.1.2 Herbicide‐resistant crops 334<br/><br/>16.1.3 Improving the nutritional quality of plants by gene addition 337<br/><br/>16.1.4 Other gene addition projects 338<br/><br/>16.2 Gene subtraction 339<br/><br/>16.2.1 Antisense RNA and the engineering of fruit ripening in tomato 340<br/><br/>16.2.2 Other examples of the use of antisense RNA in plant genetic engineering 342<br/><br/>16.3 Gene editing with a programmable nuclease 344<br/><br/>16.3.1 Gene editing of phytoene desaturase in rice 344<br/><br/>16.3.2 Editing of multiple genes in a single plant 346<br/><br/>16.3.3 Future developments in gene editing of plants 347<br/><br/>16.4 Are GM plants harmful to human health and the environment? 349<br/><br/>16.4.1 Safety concerns with selectable markers 349<br/><br/>16.4.2 The possibility of harmful effects on the environment 350<br/><br/>Further reading 351<br/><br/>17 Gene Cloning and DNA Analysis in Forensic Science and Archaeology 355<br/><br/>17.1 DNA analysis in the identification of crime suspects 356<br/><br/>17.1.1 Genetic fingerprinting by hybridization probing 356<br/><br/>17.1.2 DNA profiling by PCR of short tandem repeats 357<br/><br/>17.2 Studying kinship by DNA profiling 359<br/><br/>17.2.1 Related individuals have similar DNA profiles 359<br/><br/>17.2.2 DNA profiling and the remains of the Romanovs 360<br/><br/>17.3 Sex identification by DNA analysis 363<br/><br/>17.3.1 PCRs directed at Y chromosome‐specific sequences 363<br/><br/>17.3.2 PCR of the amelogenin gene 364<br/><br/>17.4 Archaeogenetics – using DNA to study human prehistory 365<br/><br/>17.4.1 The origins of modern humans 365<br/><br/>17.4.2 DNA can also be used to study prehistoric human migrations 370
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Science / Life Sciences / Biology, Science / Life Sciences / Cell Biology, Science / Life Sciences / Microbiology, Science / Life Sciences / Genetics & Genomics, Science / Life Sciences / Molecular Biology
856 ## - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://www.google.co.in/books/edition/Gene_Cloning_and_DNA_Analysis/yEvt3JdtgTQC?hl=en&gbpv=1&dq=Gene+cloning+and+DNA+analysis+by+brown+T+A&printsec=frontcover">https://www.google.co.in/books/edition/Gene_Cloning_and_DNA_Analysis/yEvt3JdtgTQC?hl=en&gbpv=1&dq=Gene+cloning+and+DNA+analysis+by+brown+T+A&printsec=frontcover</a>
901 ## - LOCAL DATA ELEMENT A, LDA (RLIN)
Acc. No. 32277
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Reference Book
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Collection code Home library Current library Shelving location Date acquired Cost, normal purchase price Inventory number Total Checkouts Full call number Barcode Date last seen Price effective from Koha item type Source of acquisition Cost, replacement price Public note
    Dewey Decimal Classification   Not For Loan Reference Amity Central Library Amity Central Library AIB 10/09/2021 9187.00 SBA/12666 dated: 12/07/2021   572.8633 BRO-G 32277 10/09/2021 10/09/2021 Reference Book      
    Dewey Decimal Classification   Not For Loan Reference Amity Central Library Amity Central Library AIB 15/03/2024 8275.00 SBA/13127 dated 4.3.2024   572.8633 BRO-G 99AIB 15/03/2024 10/09/2021 Reference Book SBA 8275.00 Gene cloning and DNA Analysis
Web Counter

Powered by Koha