An Introduction to Probability :Theory and its Applications Vol - ll (Record no. 4188)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 06497nam a2200205Ia 4500 |
003 - CONTROL NUMBER IDENTIFIER | |
control field | OSt |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20200121154907.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 140801s1971 xx 000 0 und d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9788126518067 |
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 519.2 FEL - I;Vol-II |
100 ## - MAIN ENTRY--PERSONAL NAME | |
Personal name | Feller, William |
245 ## - TITLE STATEMENT | |
Title | An Introduction to Probability :Theory and its Applications Vol - ll |
250 ## - EDITION STATEMENT | |
Edition statement | 2nd |
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) | |
Name of publisher, distributor, etc | Wiley India |
Date of publication, distribution, etc | 1971 |
Place of publication, distribution, etc | New Delhi |
300 ## - PHYSICAL DESCRIPTION | |
Extent | 669p. |
500 ## - GENERAL NOTE | |
General note | <br/>1 The Exponential and the Uniform Densities<br/><br/>Densities Convolutions<br/><br/>The Exponential Density<br/><br/>Waiting Time Paradoxes The Poisson Process<br/><br/>The Persistence of Bad Luck<br/><br/>Waiting Times and Order Statistics<br/><br/>The Uniform Distribution<br/><br/>Random Splittings<br/><br/>Terminating Transient Processes<br/><br/>Diverse Applications<br/><br/>Existence of Limits in Stochastic Processes<br/><br/>9 Renewal Theory on the Whole Line<br/><br/>Problems for Solution<br/><br/>Random Walks in 311<br/><br/>Basic Concepts and Notations<br/><br/>Duality Types of Random Walks<br/><br/>Convolutions and Covering Theorems<br/><br/>Random Directions<br/><br/>The Use of Lebesgue Measure<br/><br/>Empirical Distributions<br/><br/>Problems for Solution<br/><br/>Special Densities Randomization<br/><br/>Gamma Distributions<br/><br/>3 Related Distributions of Statistics<br/><br/>Some Common Densities<br/><br/>Randomization and Mixtures<br/><br/>Discrete Distributions<br/><br/>CHAPTER<br/><br/>chapter<br/><br/>CHAPTER<br/><br/>Symmetrization<br/><br/>Integration by Parts Existence of Moments<br/><br/>Chebyshevs Inequality<br/><br/>Further Inequalities Convex Functions<br/><br/>Simple Conditional Distributions Mixtures<br/><br/>Starred sections are not required for the understanding of the sequel and should be omitted at first readme<br/><br/>11 Conditional Expectations<br/><br/>Problems for Solution<br/><br/>A Survey of some Important Distributions and Processes<br/><br/>Examples<br/><br/>Infinitely Divisible Distributions in Rl<br/><br/>Processes with Independent Increments<br/><br/>5 Ruin Problems in Compound Poisson Processes<br/><br/>Renewal Processes<br/><br/>Examples and Problems<br/><br/>Random Walks<br/><br/>The Queuing Process<br/><br/>Persistent and Transient Random Walks<br/><br/>General Markov Chains<br/><br/>12 Martingales<br/><br/>Problems for Solution<br/><br/>Laws of Large Numbers Applications in Analysis<br/><br/>Bernstein Polynomials Absolutely Monotone Functions<br/><br/>Moment Problems<br/><br/>4 Application to Exchangeable Variables<br/><br/>5 Generalized Taylor Formula and SemiGroups<br/><br/>Inversion Formulas for Laplace Transforms<br/><br/>7 Laws of Large Numbers for Identically Distributed Variables<br/><br/>8 Strong Laws<br/><br/>9 Generalization to Martingales<br/><br/>Problems for Solution<br/><br/>The Basic Limit Theorems<br/><br/>Special Properties<br/><br/>Distributions as Operators<br/><br/>The Central Limit Theorem<br/><br/>5 Infinite Convolutions<br/><br/>Selection Theorems<br/><br/>7 Ergodic Theorems for Markov Chains<br/><br/>Regular Variation<br/><br/>9 Asymptotic Properties of Regularly Varying Functions<br/><br/>Problems for Solution<br/><br/>chapter K Infinitely Divisible Distributions and SemiGroups<br/><br/>Convolution SemiGroups<br/><br/>Preparatory Lemmas<br/><br/>Finite Variances<br/><br/>The Main Theorems<br/><br/>Stable SemiGroups<br/><br/>Triangular Arrays with Identical Distributions<br/><br/>Domains of Attraction<br/><br/>Variable Distributions The ThreeSeries Theorem<br/><br/>Problems for Solution<br/><br/>Markov Processes and SemiGroups<br/><br/>The PseudoPoisson Type<br/><br/>Linear Increments<br/><br/>Jump Processes<br/><br/>Diffusion Processes in 311<br/><br/>The Forward Equation Boundary Conditions<br/><br/>Diffusion in Higher Dimensions<br/><br/>Subordinated Processes<br/><br/>Markov Processes and SemiGroups<br/><br/>The Exponential Formula of SemiGroup Theory<br/><br/>Generators The Backward Equation<br/><br/>Renewal Theory<br/><br/>Proof of the Renewal Theorem<br/><br/>3 Refinements<br/><br/>Persistent Renewal Processes<br/><br/>The Number Nt of Renewal Epochs<br/><br/>Distribution of Ladder Heights WienerHopf Factor ization<br/><br/>3a The WienerHopf Integral Equation<br/><br/>Examples<br/><br/>Applications<br/><br/>A Combinatorial Lemma<br/><br/>Distribution of Ladder Epochs<br/><br/>The Arc Sine Laws<br/><br/>Miscellaneous Complements<br/><br/>Problems for Solution<br/><br/>Laplace Transforms Tauberian Theorems Resolvents<br/><br/>Elementary Properties<br/><br/>Examples<br/><br/>Completely Monotone Functions Inversion Formulas<br/><br/>Tauberian Theorems<br/><br/>6 Stable Distributions<br/><br/>7 Infinitely Divisible Distributions<br/><br/>8 Higher Dimensions<br/><br/>Laplace Transforms for SemiGroups<br/><br/>The HilleYosida Theorem<br/><br/>Problems for Solution<br/><br/>Applications of Laplace Transforms<br/><br/>Examples<br/><br/>Limit Theorems Involving Arc Sine Distributions<br/><br/>Busy Periods and Related Branching Processes<br/><br/>Diffusion Processes<br/><br/>BirthandDeath Processes and Random Walks<br/><br/>The Kolmogorov Differential Equations<br/><br/>The Pure Birth Process<br/><br/>Calculation of Ergodic Limits and of FirstPassage Times<br/><br/>Problems for Solution<br/><br/>Characteristic Functions<br/><br/>Special Distributions Mixtures<br/><br/>2a Some Unexpected Phenomena<br/><br/>Uniqueness Inversion Formulas<br/><br/>Regularity Properties<br/><br/>The Central Limit Theorem for Equal Components<br/><br/>The Lindeberg Conditions<br/><br/>Characteristic Functions in Higher Dimensions<br/><br/>8 Two Characterizations of the Normal Distribution<br/><br/>Problems for Solution<br/><br/>CHAPTER XVI Expansions Related to the Central Limit Theorem<br/><br/>Notations<br/><br/>Expansions for Densities<br/><br/>Smoothing<br/><br/>Expansions for Distributions<br/><br/>The BerryEsseen Theorems<br/><br/>Expansions in the Case of Varying Components<br/><br/>Large Deviations<br/><br/>Infinitely Divisible Distributions<br/><br/>Canonical Forms The Main Limit Theorem<br/><br/>2a Derivatives of Characteristic Functions<br/><br/>Examples and Special Properties<br/><br/>Special Properties<br/><br/>Stable Distributions and Their Domains of Attraction<br/><br/>6 Stable Densities<br/><br/>Triangular Arrays<br/><br/>8 The Class L<br/><br/>9 Partial Attraction Universal Laws<br/><br/>10 Infinite Convolutions<br/><br/>Higher Dimensions<br/><br/>Problems for Solution<br/><br/>Applications of Fourier Methods to Random Walks<br/><br/>2 Finite Intervals Walds Approximation<br/><br/>The WienerHopf Factorization<br/><br/>Implications and Applications<br/><br/>Two Deeper Theorems<br/><br/>Criteria for Persistency<br/><br/>Problems for Solution<br/><br/>Harmonic Analysis<br/><br/>Positive Definite Functions<br/><br/>Stationary Processes<br/><br/>Fourier Series<br/><br/>5 The Poisson Summation Formula<br/><br/>Positive Definite Sequences<br/><br/>L2 Theory<br/><br/>Stochastic Processes and Integrals<br/><br/>Problems for Solution<br/><br/>Answers to Problems<br/><br/>Some Books on Cognate Subjects<br/><br/>Index<br/><br/>Copyright<br/><br/><br/><br/> |
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name as entry element | Probabilities and applied mathematics |
856 ## - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | <a href="https://books.google.co.in/books?id=OXkg-LvRgjUC&printsec=frontcover&dq=Introduction+to+Probability+Theory+and+its+Applications+Vol+-+ll&hl=en&sa=X&ved=0ahUKEwiI-raqo5TnAhUUVH0KHecrAJcQ6AEIKDAA#v=onepage&q=Introduction%20to%20Probability%20Theory%20and%20its%20Applications%20Vol%20-%20ll&f=false">https://books.google.co.in/books?id=OXkg-LvRgjUC&printsec=frontcover&dq=Introduction+to+Probability+Theory+and+its+Applications+Vol+-+ll&hl=en&sa=X&ved=0ahUKEwiI-raqo5TnAhUUVH0KHecrAJcQ6AEIKDAA#v=onepage&q=Introduction%20to%20Probability%20Theory%20and%20its%20Applications%20Vol%20-%20ll&f=false</a> |
942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
Source of classification or shelving scheme | Dewey Decimal Classification |
Koha item type | Books |
Withdrawn status | Lost status | Source of classification or shelving scheme | Damaged status | Not for loan | Home library | Current library | Shelving location | Date acquired | Cost, normal purchase price | Total Checkouts | Full call number | Barcode | Date last seen | Date checked out | Uniform Resource Identifier | Price effective from | Koha item type | Collection code |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dewey Decimal Classification | Amity Central Library | Amity Central Library | Applied Math | 03/01/2014 | 549.00 | 2 | 519.2 FEL-I; Vol-II | 19798 | 27/10/2016 | 12/10/2016 | https://epgp.inflibnet.ac.in/Home/Download | 03/01/2014 | Books | |||||
Dewey Decimal Classification | Amity Central Library | Amity Central Library | Applied Math | 03/01/2014 | 549.00 | 519.2 FEL-I; Vol-II | 19799 | 23/08/2014 | https://epgp.inflibnet.ac.in/Home/Download | 03/01/2014 | Books | |||||||
Dewey Decimal Classification | Not For Loan | Amity Central Library | Amity Central Library | Applied Math | 03/01/2014 | 549.00 | 519.2 FEL-I; Vol-II | 19800 | 23/08/2014 | https://epgp.inflibnet.ac.in/Home/Download | 03/01/2014 | Reference Book | Reference |