Basic Econometrics (Record no. 4148)

MARC details
000 -LEADER
fixed length control field 16062nam a2200205Ia 4500
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20190918020003.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 140801s2009 xx 000 0 und d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780071333450
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 330.015195 GUJ-B
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Gujarati, Damodra N
245 ## - TITLE STATEMENT
Title Basic Econometrics
250 ## - EDITION STATEMENT
Edition statement 5th
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Name of publisher, distributor, etc Mcgraw -Hill
Date of publication, distribution, etc 2009
500 ## - GENERAL NOTE
General note Contents<br/>Preface vii<br/>Acknowledgments xi<br/>Introduction 1<br/> I.1 What is Econometrics? 1<br/> I.2 Why a Separate Discipline? 2<br/> I.3 Methodology of Econometrics 2<br/> I.4 Types of Econometrics 9<br/> I.5 Mathematical and Statistical Prerequisites 10<br/> I.6 The Role of the Computer 10<br/> I.7 Suggestions for Further Reading 10<br/>PART 1 Single-Equation Regression Models<br/>1. The Nature of Regression Analysis 15<br/> 1.1 Historical Origin of the Term Regression 15<br/> 1.2 The Modern Interpretation of Regression 15<br/> 1.3 Statistical versus Deterministic Relationships 19<br/> 1.4 Regression versus Causation 19<br/> 1.5 Regression versus Correlation 20<br/> 1.6 Terminology and Notation 20<br/> 1.7 The Nature and Sources of Data for Economic Analysis 21<br/> Summary and Conclusions 28<br/> Multiple Choice Questions 29<br/> Exercises 32<br/> Key to Multiple Choice Questions 37<br/>2. Two-Variable Regression Analysis: Some Basic Ideas 38<br/> 2.1 A Hypothetical Example 38<br/> 2.2 The Concept of Population Regression Function (PRF) 41<br/> 2.3 The Meaning of the Term Linear 42<br/> 2.4 Stochastic Specifi cation of PRF 43<br/>xvi Contents<br/> 2.5 The Signifi cance of the Stochastic Disturbance Term 45<br/> 2.6 The Sample Regression Function (SRF) 46<br/> 2.7 Illustrative Examples 49<br/> Summary and Conclusions 51<br/> Multiple Choice Questions 51<br/> Exercises 54<br/> Key to Multiple Choice Questions 60<br/>3. Two-Variable Regression Model: The Problem of Estimation 61<br/> 3.1 The Method of Ordinary Least Squares 61<br/> 3.2 The Classical Linear Regression Model: The Assumptions Underlying the<br/>Method of Least Squares 67<br/> 3.3 Precision or Standard Errors of Least-Squares Estimates 74<br/> 3.4 Properties of Least-Squares Estimators: The Gauss–Markov Theorem 76<br/> 3.5 The Coeffi cient of Determination r2<br/>: A Measure of “Goodness of Fit” 78<br/> 3.6 A Numerical Example 83<br/> 3.7 Illustrative Examples 86<br/> 3.8 A Note on Monte Carlo Experiments 88<br/> Summary and Conclusions 89<br/> Multiple Choice Questions 90<br/> Exercises 93<br/> Key to Multiple Choice Questions 99<br/> Appendix 3A 100<br/>4. Classical Normal Linear Regression Model (CNLRM) 105<br/> 4.1 The Probability Distribution of Disturbances ui<br/> 105<br/> 4.2 The Normality Assumption for ui<br/> 106<br/> 4.3 Properties of OLS Estimators under the Normality Assumption 107<br/> 4.4 The Method of Maximum Likelihood (ML) 109<br/> Summary and Conclusions 110<br/> Appendix 4A 113<br/>5. Two-Variable Regression: Interval Estimation and Hypothesis Testing 115<br/> 5.1 Statistical Prerequisites 115<br/> 5.2 Interval Estimation: Some Basic Ideas 115<br/> 5.3 Confi dence Intervals for Regression Coeffi cients b1 and b2 117<br/> 5.4 Confi dence Interval for s2 119<br/> 5.5 Hypothesis Testing: General Comments 120<br/> 5.6 Hypothesis Testing: The Confi dence-Interval Approach 121<br/> 5.7 Hypothesis Testing: The Test-of-Signifi cance Approach 122<br/> 5.8 Hypothesis Testing: Some Practical Aspects 127<br/> 5.9 Regression Analysis and Analysis of Variance 131<br/> 5.10 Application of Regression Analysis: The Problem of Prediction 133<br/> 5.11 Reporting the Results of Regression Analysis 136<br/> 5.12 Evaluating the Results of Regression Analysis 137<br/> Summary and Conclusions 140<br/> Multiple Choice Questions 141<br/> Exercises 146<br/>Contents xvii<br/>Key to Multiple Choice Questions 154<br/> Appendix 5A 155<br/>6. Extensions of the Two-Variable Linear Regression Model 159<br/> 6.1 Regression through the Origin 159<br/> 6.2 Scaling and Units of Measurement 166<br/> 6.3 Regression on Standardized Variables 170<br/> 6.4 Functional Forms of Regression Models 171<br/> 6.5 How to Measure Elasticity: The Log-Linear Model 172<br/> 6.6 Semilog Models: Log–Lin and Lin–Log Models 175<br/> 6.7 Reciprocal Models 179<br/> 6.8 Choice of Functional Form 184<br/> 6.9 A Note on the Nature of the Stochastic Error Term: Additive versus<br/>Multiplicative Stochastic Error Term 186<br/> Summary and Conclusions 187<br/> Multiple Choice Questions 188<br/> Exercises 190<br/> Key to Multiple Choice Questions 196<br/> Appendix 6A 197<br/>7. Multiple Regression Analysis: The Problem of Estimation 203<br/> 7.1 The Three-Variable Model: Notation and Assumptions 203<br/> 7.2 Interpretation of Multiple Regression Equation 205<br/> 7.3 The Meaning of Partial Regression Coeffi cients 205<br/> 7.4 OLS and ML Estimation of the Partial Regression Coeffi cients 207<br/> 7.5 The Multiple Coeffi cient of Determination R2<br/> and the<br/>Multiple Coeffi cient of Correlation R 210<br/> 7.6 An Illustrative Example 212<br/> 7.7 Simple Regression in the Context of Multiple Regression:<br/>Introduction to Specifi cation Bias 214<br/> 7.8 R2<br/> and the Adjusted R2 215<br/> 7.9 The Cobb–Douglas Production Function: More on Functional Form 220<br/> 7.10 Polynomial Regression Models 223<br/> *7.11 Partial Correlation Coeffi cients 226<br/> Summary and Conclusions 228<br/> Multiple Choice Questions 228<br/> Exercises 231<br/> Key to Multiple Choice Questions 243<br/> Appendix 7A 243<br/>8. Multiple Regression Analysis: The Problem of Inference 249<br/> 8.1 The Normality Assumption Once Again 249<br/> 8.2 Hypothesis Testing in Multiple Regression: General Comments 250<br/> 8.3 Hypothesis Testing about Individual Regression Coeffi cients 251<br/> 8.4 Testing the Overall Signifi cance of the Sample Regression 253<br/> 8.5 Testing the Equality of Two Regression Coeffi cients 262<br/> 8.6 Restricted Least Squares: Testing Linear Equality Restrictions 264<br/> 8.7 Testing for Structural or Parameter Stability of Regression Models: The Chow Test 270<br/>xviii Contents<br/> 8.8 Prediction with Multiple Regression 275<br/> 8.9 The Troika of Hypothesis Tests: The Likelihood Ratio (LR), Wald (W), and<br/>Lagrange Multiplier (LM) Tests 275<br/>8.10 Testing the Functional Form of Regression: Choosing between<br/>Linear and Log–Linear Regression Models 276<br/> Summary and Conclusions 278<br/> Multiple Choice Questions 278<br/> Exercises 281<br/> Key to Multiple Choice Questions 292<br/> Appendix 8A 292<br/>9. Dummy Variable Regression Models 295<br/> 9.1 The Nature of Dummy Variables 295<br/> 9.2 ANOVA Models 296<br/> 9.3 ANOVA Models with Two Qualitative Variables 300<br/> 9.4 Regression with a Mixture of Quantitative and Qualitative Regressors:<br/>The ANCOVA Models 302<br/> 9.5 The Dummy Variable Alternative to the Chow Test 303<br/> 9.6 Interaction Effects Using Dummy Variables 306<br/> 9.7 The Use of Dummy Variables in Seasonal Analysis 307<br/> 9.8 Piecewise Linear Regression 311<br/> 9.9 Panel Data Regression Models 314<br/> 9.10 Some Technical Aspects of the Dummy Variable Technique 314<br/> 9.11 Topics for Further Study 316<br/> 9.12 A Concluding Example 316<br/> Summary and Conclusions 320<br/> Multiple Choice Questions 320<br/> Exercises 324<br/> Key to Multiple Choice Questions 332<br/> Appendix 9A 332<br/>PART 2 Relaxing the Assumptions of the Classical Model<br/>10. Multicollinearity: What Happens If the Regressors are Correlated? 339<br/> 10.1 The Nature of Multicollinearity 340<br/> 10.2 Estimation in the Presence of Perfect Multicollinearity 342<br/> 10.3 Estimation in the Presence of “High” but “Imperfect” Multicollinearity 344<br/> 10.4 Multicollinearity: Much Ado about Nothing? Theoretical Consequences of<br/>Multicollinearity 344<br/> 10.5 Practical Consequences of Multicollinearity 346<br/> 10.6 An Illustrative Example 351<br/> 10.7 Detection of Multicollinearity 356<br/> 10.8 Remedial Measures 360<br/> 10.9 Is Multicollinearity Necessarily Bad? Maybe Not, If the Objective<br/>Is Prediction Only 365<br/> 10.10 An Extended Example: The Longley Data 365<br/> Summary and Conclusions 368<br/>Contents xix<br/> Multiple Choice Questions 369<br/> Exercises 372<br/> Key to Multiple Choice Questions 385<br/>11. Heteroscedasticity: What Happens if the Error Variance is Nonconstant? 386<br/> 11.1 The Nature of Heteroscedasticity 386<br/> 11.2 OLS Estimation in the Presence of Heteroscedasticity 391<br/> 11.3 The Method of Generalized Least Squares (GLS) 392<br/> 11.4 Consequences of Using OLS in the Presence of Heteroscedasticity 395<br/> 11.5 Detection of Heteroscedasticity 397<br/> 11.6 Remedial Measures 410<br/> 11.7 Concluding Examples 416<br/> 11.8 A Caution about Overreacting to Heteroscedasticity 420<br/> Summary and Conclusions 421<br/> Multiple Choice Questions 421<br/> Exercises 424<br/> Key to Multiple Choice Questions 432<br/> Appendix 11A 432<br/>12. Autocorrelation: What Happens if the Error Terms are Correlated? 436<br/> 12.1 The Nature of the Problem 437<br/> 12.2 OLS Estimation in the Presence of Autocorrelation 443<br/> 12.3 The BLUE Estimator in the Presence of Autocorrelation 445<br/> 12.4 Consequences of Using OLS in the Presence of Autocorrelation 446<br/> 12.5 Relationship between Wages and Productivity in the Business Sector of the<br/>United States, 1960–2005 451<br/> 12.6 Detecting Autocorrelation 453<br/> 12.7 What to do when you fi nd Autocorrelation: Remedial Measures 463<br/> 12.8 Model Mis-Specifi cation versus Pure Autocorrelation 463<br/> 12.9 Correcting for (Pure) Autocorrelation: The Method of Generalized<br/>Least Squares (GLS) 464<br/> 12.10 The Newey–West Method of Correcting the OLS Standard Errors 470<br/> 12.11 OLS versus FGLS and HAC 470<br/> 12.12 Additional Aspects of Autocorrelation 471<br/> 12.13 A Concluding Example 472<br/> Summary and Conclusions 474<br/> Multiple Choice Questions 475<br/> Exercises 478<br/> Key to Multiple Choice Questions 490<br/> Appendix 12A 491<br/>13. Econometric Modeling: Model Specifi cation and Diagnostic Testing 492<br/> 13.1 Model Selection Criteria 493<br/> 13.2 Types of Specifi cation Errors 493<br/> 13.3 Consequences of Model Specifi cation Errors 495<br/> 13.4 Tests of Specifi cation Errors 499<br/> 13.5 Errors of Measurement 506<br/>xx Contents<br/> 13.6 Incorrect Specifi cation of the Stochastic Error Term 510<br/> 13.7 Nested versus Non-Nested Models 510<br/> 13.8 Tests of Non-Nested Hypotheses 511<br/> 13.9 Model Selection Criteria 516<br/> 13.10 Additional Topics in Econometric Modeling 520<br/> 13.11 Concluding Examples 524<br/> 13.12 Non-Normal Errors and Stochastic Regressors 533<br/> 13.13 A Word to the Practitioner 535<br/> Summary and Conclusions 536<br/> Multiple Choice Questions 537<br/> Exercises 540<br/> Key to Multiple Choice Questions 546<br/> Appendix 13A 546<br/>PART 3 Topics in Econometrics<br/>14. Nonlinear Regression Models 553<br/> 14.1 Intrinsically Linear and Intrinsically Nonlinear Regression Models 553<br/> 14.2 Estimation of Linear and Nonlinear Regression Models 555<br/> 14.3 Estimating Nonlinear Regression Models: The Trial-and-Error Method 555<br/> 14.4 Approaches to Estimating Nonlinear Regression Models 557<br/> 14.5 Illustrative Examples 558<br/> Summary and Conclusions 562<br/> Multiple Choice Questions 563<br/> Exercises 565<br/> Key to Multiple Choice Questions 566<br/> Appendix 14A 567<br/>15. Qualitative Response Regression Models 570<br/> 15.1 The Nature of Qualitative Response Models 570<br/> 15.2 The Linear Probability Model (LPM) 572<br/> 15.3 Applications of LPM 578<br/> 15.4 Alternatives to LPM 581<br/> 15.5 The Logit Model 582<br/> 15.6 Estimation of the Logit Model 584<br/> 15.7 The Grouped Logit (Glogit) Model: A Numerical Example 587<br/> 15.8 The Logit Model for Ungrouped or Individual Data 590<br/> 15.9 The Probit Model 594<br/> 15.10 Logit and Probit Models 599<br/> 15.11 The Tobit Model 602<br/> 15.12 Modeling Count Data: The Poisson Regression Model 604<br/> 15.13 Further Topics in Qualitative Response Regression Models 607<br/> Summary and Conclusions 609<br/> Multiple Choice Questions 610<br/> Exercises 613<br/> Key to Multiple Choice Questions 620<br/> Appendix 15A 620<br/>Contents xxi<br/>16. Panel Data Regression Models 622<br/> 16.1 Why Panel Data? 623<br/> 16.2 Panel Data: An Illustrative Example 624<br/> 16.3 Pooled OLS Regression or Constant Coeffi cients Model 625<br/> 16.4 The Fixed Effect Least-Squares Dummy Variable (LSDV) Model 627<br/> 16.5 The Fixed-Effect Within-Group (WG) Estimator 630<br/> 16.6 The Random Effects Model (REM) 633<br/> 16.7 Properties of Various Estimators 637<br/> 16.8 Fixed Effects versus Random Effects Model: Some Guidelines 637<br/> 16.9 Panel Data Regressions: Some Concluding Comments 638<br/> 16.10 Some Illustrative Examples 639<br/> Summary and Conclusions 644<br/> Multiple Choice Questions 645<br/> Exercises 648<br/> Key to Multiple Choice Questions 651<br/>17. Dynamic Econometric Models: Autoregressive and Distributed-Lag Models 652<br/> 17.1 The Role of “Time,” or “Lag,” in Economics 653<br/> 17.2 The Reasons for Lags 657<br/> 17.3 Estimation of Distributed-Lag Models 658<br/> 17.4 The Koyck Approach to Distributed-Lag Models 659<br/> 17.5 Rationalization of the Koyck Model: The Adaptive Expectations Model 664<br/> 17.6 Another Rationalization of the Koyck Model: The Stock<br/>Adjustment, or Partial Adjustment, Model 666<br/> 17.7 Combination of Adaptive Expectations and Partial Adjustment Models 668<br/> 17.8 Estimation of Autoregressive Models 669<br/> 17.9 The Method of Instrumental Variables (IV) 670<br/> 17.10 Detecting Autocorrelation in Autoregressive Models: Durbin h Test 671<br/> 17.11 A Numerical Example: The Demand for Money in Canada,<br/>1979–I to 1988–IV 673<br/> 17.12 Illustrative Examples 676<br/> 17.13 The Almon Approach to Distributed-Lag Models:<br/>The Almon or Polynomial Distributed Lag (PDL) 679<br/> 17.14 Causality in Economics: The Granger Causality Test 686<br/> Summary and Conclusions 692<br/> Multiple Choice Questions 693<br/> Exercises 696<br/> Key to Multiple Choice Questions 705<br/> Appendix 17A 705<br/>PART 4 Simultaneous-Equation Models and Time Series Econometrics<br/>18. Simultaneous-Equation Models 709<br/> 18.1 The Nature of Simultaneous-Equation Models 709<br/> 18.2 Examples of Simultaneous-Equation Models 710<br/> 18.3 The Simultaneous-Equation Bias: Inconsistency of OLS Estimators 715<br/> 18.4 The Simultaneous-Equation Bias: A Numerical Example 718<br/> Summary and Conclusions 720<br/>xxii Contents<br/> Multiple Choice Questions 720<br/> Exercises 721<br/> Key to Multiple Choice Questions 725<br/>19. The Identifi cation Problem 726<br/> 19.1 Notations and Defi nitions 726<br/> 19.2 The Identifi cation Problem 729<br/> 19.3 Rules for Identifi cation 736<br/>19.4 A Test of Simultaneity 740<br/>19.5 Tests for Exogeneity 743<br/> Summary and Conclusions 743<br/> Multiple Choice Questions 744<br/> Exercises 746<br/> Key to Multiple Choice Questions 750<br/>20. Simultaneous-Equation Methods 751<br/> 20.1 Approaches to Estimation 751<br/> 20.2 Recursive Models and Ordinary Least Squares 753<br/> 20.3 Estimation of a Just Identifi ed Equation: The Method of Indirect Least Squares (ILS) 755<br/> 20.4 Estimation of an Overidentifi ed Equation: The Method of<br/>Two-Stage Least Squares (2SLS) 758<br/> 20.5 2SLS: A Numerical Example 761<br/> 20.6 Illustrative Examples 764<br/> Summary and Conclusions 770<br/> Multiple Choice Questions 771<br/> Exercises 773<br/> Key to Multiple Choice Questions 777<br/> Appendix 20A 777<br/>21. Time Series Econometrics: Some Basic Concepts 780<br/> 21.1 A Look at Selected U.S. Economic Time Series 781<br/> 21.2 Key Concepts 782<br/> 21.3 Stochastic Processes 783<br/> 21.4 Unit Root Stochastic Process 787<br/> 21.5 Trend Stationary (TS) and Difference Stationary (DS)<br/>Stochastic Processes 788<br/> 21.6 Integrated Stochastic Processes 789<br/> 21.7 The Phenomenon of Spurious Regression 790<br/> 21.8 Tests of Stationarity 791<br/> 21.9 The Unit Root Test 797<br/> 21.10 Transforming Nonstationary Time Series 802<br/> 21.11 Cointegration: Regression of a Unit Root Time Series on<br/>Another Unit Root Time Series 805<br/> 21.12 Some Economic Applications 808<br/> Summary and Conclusions 811<br/> Multiple Choice Questions 812<br/> Exercises 815<br/> Key to Multiple Choice Questions 819<br/>Contents xxiii<br/>22. Time Series Econometrics: Forecasting 820<br/> 22.1 Approaches to Economic Forecasting 820<br/> 22.2 AR, MA, and ARIMA Modeling of Time Series Data 822<br/> 22.3 The Box–Jenkins (BJ) Methodology 824<br/> 22.4 Identifi cation 825<br/> 22.5 Estimation of the ARIMA Model 829<br/> 22.6 Diagnostic Checking 829<br/> 22.7 Forecasting 830<br/> 22.8 Further Aspects of the BJ Methodology 831<br/> 22.9 Vector Autoregression (VAR) 831<br/> 22.10 Measuring Volatility in Financial Time Series: The ARCH and GARCH Models 838<br/> 22.11 Concluding Examples 843<br/> Summary and Conclusions 845<br/> Multiple Choice Questions 846<br/> Exercises 848<br/> Key to Multiple Choice Questions 850<br/>Appendix D* Statistical Tables 851<br/>Selected Bibliography 868<br/>Index 873
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Economics
700 ## - ADDED ENTRY--PERSONAL NAME
Personal name Damodra N Gujarati
856 ## - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://books.google.co.in/books?id=WcCjAgAAQBAJ&printsec=frontcover&dq=Basic+Econometrics&hl=en&sa=X&ved=0ahUKEwiypaPPidXkAhWHMo8KHY6tCiEQ6AEIKDAA#v=onepage&q=Basic%20Econometrics&f=false">https://books.google.co.in/books?id=WcCjAgAAQBAJ&printsec=frontcover&dq=Basic+Econometrics&hl=en&sa=X&ved=0ahUKEwiypaPPidXkAhWHMo8KHY6tCiEQ6AEIKDAA#v=onepage&q=Basic%20Econometrics&f=false</a>
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Books
Koha issues (borrowed), all copies 20
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Collection code Home library Current library Shelving location Date acquired Cost, normal purchase price Total Checkouts Full call number Barcode Date last seen Uniform Resource Identifier Price effective from Koha item type Checked out Date checked out Total Renewals
    Dewey Decimal Classification   Not For Loan Reference Amity Central Library Amity Central Library ASE 03/01/2014 715.00   330.015195 GUJ-B 19699 23/08/2014 https://epgp.inflibnet.ac.in/ 03/01/2014 Reference Book      
    Dewey Decimal Classification     Text Book Amity Central Library Amity Central Library ASE 03/01/2014 715.00 18 330.015195 GUJ-B 19700 08/11/2024 https://epgp.inflibnet.ac.in/ 03/01/2014 Books 22/11/2024 08/11/2024  
    Dewey Decimal Classification     Text Book Amity Central Library Amity Central Library ASE 03/01/2014 715.00 12 330.015195 GUJ-B 19701 09/10/2024 https://epgp.inflibnet.ac.in/ 03/01/2014 Books   26/09/2024  
    Dewey Decimal Classification     Text Book Amity Central Library Amity Central Library ASE 03/01/2014 715.00 17 330.015195 GUJ-B 19702 28/01/2019 https://epgp.inflibnet.ac.in/ 03/01/2014 Books   25/09/2018  
    Dewey Decimal Classification     Text Book Amity Central Library Amity Central Library ASE 03/01/2014 715.00 11 330.015195 GUJ-B 19703 23/10/2024 https://epgp.inflibnet.ac.in/ 03/01/2014 Books   04/10/2024  
    Dewey Decimal Classification     Text Book Amity Central Library Amity Central Library ASE 03/01/2014 715.00 14 330.015195 GUJ-B 19704 03/12/2018 https://epgp.inflibnet.ac.in/ 03/01/2014 Books   31/07/2018  
    Dewey Decimal Classification     Text Book Amity Central Library Amity Central Library ASE 03/01/2014 715.00 4 330.015195 GUJ-B 19705 24/06/2016 https://epgp.inflibnet.ac.in/ 03/01/2014 Books 08/07/2016 24/06/2016  
    Dewey Decimal Classification     Text Book Amity Central Library Amity Central Library ASE 03/01/2014 715.00 15 330.015195 GUJ-B 19706 23/10/2024 https://epgp.inflibnet.ac.in/ 03/01/2014 Books   09/10/2024  
    Dewey Decimal Classification     Text Book Amity Central Library Amity Central Library ASE 03/01/2014 715.00 10 330.015195 GUJ-B 19707 04/11/2019 https://epgp.inflibnet.ac.in/ 03/01/2014 Books   17/09/2019  
    Dewey Decimal Classification     Text Book Amity Central Library Amity Central Library ASE 03/01/2014 715.00 18 330.015195 GUJ-B 19708 16/04/2018 https://epgp.inflibnet.ac.in/ 03/01/2014 Books   23/02/2018 3
Web Counter

Powered by Koha