Modern Control Engineering

Ogata, Katsuhik

Modern Control Engineering - 5th - PHI 2012

Contents

Preface

Chapter 1 Introduction to Control Systems

1—1 Introduction

1—2 Examples of Control Systems

1—3 Closed-Loop Control versus Open-Loop Control

1—4 Outline of the Book

Chapter 2 Mathematical Modeling of Control Systems

2—1 Introduction

2—2 Transfer Function and impulse Response Function

2—3 Atomatic Control Systems

2—4 Modeling in state space

2—5 State-Space Representation of Scalar Differential Equation System

2—6 Transformation of Mathematical models with MATLAB

2—7 Linearization of Nonlinear Mathematical Models

Example Problems and Solutions Problems

Chapter 3 Mathematical Modeling of Mechanical Systems and Electrical Systems

3—1 Introduction

3—2 Mathematical Modeling of Mechanical Systems

3—3 Mathematical Modeling of Electrical Systems

Example Problems and Solutions Problems

Chapter 4 Mathematical Modeling of Fluid Systems

and Thermal Systems

4—1 Introduction 152

4—2 Liquid-Level Systems

4—3 Pneumatic Systems

4—4 Hydraulic Systems

4—5 Thermal Systems

Example Problems and Solutions Problems

Chapter 5 Transient and Steady-State Response Analyses

5—1 Introduction

5—2 First-Order Systems

5—3 Second-Order Systems

5—4 Higher Order Systems

5—5 Transient-Response Analysis with MATLAB

5—6 Routh’s Stability Criterion

5—7 Effects of Integral and Derivative Control Actions on System

Performance

5—8 Steady-State Errors in Unity-Feedback Control Systems

Example Problems and Solutions Problems

Chapter 6 Control Systems Analysis and design by the Root-Locus Method

6—1 Introduction

6—2 Root-Locus Plots

6—3 plotting Root Loci with MATLAB

6—4 Root-Locus Plots of Positive Feedback Systems

6—5 Root-Locus Approach to control Systems Design

6—6 Lead Compensation

6—7 Lag Compensation

6-8 Lag-Lead Compensation

Example Problems and Solutions Problems

Chapter 7 Control Systems Analysis and Design by the Frequency Response Method

7—1 Introduction

7—2 Bode Digrams

7—3 Polar Plots

7—4 Log-Magnitude-versus-Phase plots

7—5 Nyquist Stability Criterion

7—6 Stability Analysis

7-7 Relative Stability Analysis

7-8 Closed-Loop Frequency Response of Unity-feedback Systems

7-9 Experimental Determination of Transfer functions

7-10 Control Systems design by Frequency Response Approach

7-11 Lead Compensation

7-12 Lag Compensation

7-13 Lag-Lead Compensation

Example Problems and Solutions Problems

Chapter 8 PID Controllers and Modified PID Controllers

8—1 Introduction

8—2 Ziegler- Nichols Rules for tuning PID controllers

8—3 Design of PID Controllers with Frequency Response Approach

8—4 Design of PID Controllers with Computational Optimization Approach

8—5 Modification of PID Control Schemes

8—6 Two-Degrees-of-freedom PID Control Schemes

8—7 Zero Placement Approach to Improve Response

Example Problems and Solutions Problems

Chapter 9 Control Systems Analysis in State Space

9—1 Introduction

9—2 State-space Representations of Transfer-Function Systems

9—3 Transformation of System Models with MATLAB

9—4 Solving the Time-Invariant State Equation

9—5 Some Useful Results in vector-Matrix Analysis

9-6 Controllability

9-7 Observability

Example Problems and Solutions Problems

Chapter 10 Control Systems Design of in State Space

10—1 Introduction

10—2 Pole Placement

10—3 Solving Pole-Placement Problems with MATLAB

10—4 Design of Servo Systems

10—5 State Observers

10—6 Design of Regulator Systems with Observers

10—7 Design of Control Systems with Observers

10—8 Quadratic Optimal Regulator Systems

10-9 Robust Control Solutions

Example Problems and Solutions Problems

Appendix A

Appendix B

Appendix C

References

Index

9788120340107

629.89 OGA-M
Web Counter

Powered by Koha